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ABSTRACT

This work investigates the urgent need for models that are simultaneously robust and
responsible in Data Privacy Threat detection. In this paper a Hybrid Machine Learning
Framework is to be used that fuses Convolutional Neural Network for feature learning, also
an XGBoost classifier to be implemented which has been carefully optimized using optuna
bayesian approach. It resulted in better classification performance with an AUC 0.999 and
F1-Score of 0.9886, clearly outperforming unoptimized baselines. Importantly,
conceptualization is taken beyond mere performance, such as by introducing a way to
measure model interpretability and ethical reasoning. Hear a new comparative study
quantifying important operational statistics such as and the Traceability Index to steer deploy
resource efficiency, leverage Natural Language Processing to investigate and verify model
explanations against the ethical compliance benchmarks. This paper devising a novel metric
that use the feature of textual model outputs, i.e., Inference Privacy Score to measure the
privacy leakage risk and guarantees solution being not only high-performing but fully
traceable and responsible.

Keywords: Hybrid Machine Learning Framework, Data Privacy Threat Detection, Optuna
Bayesian Optimization, XGBoost Classifier, Inference Privacy Score, Ethical Compliance
Audit

1. INTRODUCTION

Today's digital ecosystem which is dominated by an exponential growth of the Internet of
Things (1oT) and the interplay between critical infrastructures like Smart Grids, impacted
society in a profound way achieved efficiency on one hand but also establishing an
unprecedented security and privacy concern [7, 4]. The high volume, velocity and variety of
data generated from these systems which are collectively referred to as "big data” has made
conventional signature-based security mechanisms irrelevant. As such, Machine Learning
(ML) has become the most important defensive weapon in terms of identifying network
intrusions, malware and other potential Data Privacy Threats (DPTs) with high precision
without human intervention [2]. There is a need for systems that are accurate and also
adaptive, transparent, and ethically aligned with legal requirements.

1.1 The Machine Learning Imperative in Data Privacy and Threat Detection

The ML and Deep Learning (DL) models have to be richer in their architectures for modern
cyber threats. Deep learning models, epithet Convolutional Neural Networks (CNNs), are
very suitable for automatic feature extraction from complex high-dimensional data, which is
indispensable to anomaly and malicious pattern detection in network traffic or system
binaries [2,6,7]. The success of these approach- es has been demonstrated in well-defined
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cases such as generating anomaly datasets for 10T [4], and using DL-based methods with
advanced optimization strategies (e.g., Aquila Optimizer) that could obtain accurate 1DS
designing/deploying [7]. Furthermore, the use of more advanced models such as Large
Language Models (LLMs) that can process unstructured data and produce code based on its
context adds another powerful tool in their disposal for both attacking and defence
mechanisms of cybersecurity. These layered learning machines are already starting to find
applications in different domains ranging from secure threat intelligence and vulnerable smart
contract identification to empowering cybersecurity-education platforms [1].

However, pursuing super high accuracy is likely to pull scientists into very sophisticated
nonlinear models, which act as a “black box™ [3]. This inherent opacity is contrary to the
principles of auditing, accountability and user trust when ML systems function in critical
decision-making settings. Dr. Duckworth a security analyst walking away from contributing
to the threat classification will not be good enough, rather, an auditable reason for why a DPT
was labelled as such is required — supporting the growing interest in Explainable Artificial
Intelligence (XAI) [3].

1.2 Systemic Challenges in Real-World ML Deployment

There are three system-level problems that make it hard to use ML for security: the security
of the ML models themselves, the necessity for strong interpretability, and the fact that it
goes against data privacy laws.

1.2.1 The Vulnerability of Al Systems to Adversarial Attacks

The security models that we have built in to our digital systems are seriously fragile and can
be undermined with targeted attacks. As reviewed by Paracha et al. and Balakrishnan and
Leema, mal-actors are becoming more proficient at reverse engineering well-known 66866
models available to the public in order to design their own highly effective adversarial
attacks, data poisoning, and prompt injection [3]. These attacks tamper with the input patterns
or training samples to achieve misclassification or data integrity violation, which will
severely threaten the security of national infrastructures [3, 4]. The monograph on Security
Attacks on Large Language Models (LLMs) underscores this dual nature of LLMs, by
pointing out that the great power of code-generation and natural language modeling
capabilities far from expanding the boundaries of Al, they actually create a plethora of new
doors for various security-related risks. Key is that a successful attack can be used to launch
other, potentially more sophisticated attacks [9] so defences need to be multi-layered.

1.2.2 The Critical Need for Privacy-Preserving Machine Learning

The need for large-scale data sets to train good models for threat detection causes ML
systems to be immediately faced with global level strict privacy regulations, like GDPR and
HIPAA [6]. In the context of privacy-sensitive application domains such as telehealth service
provision, mobile application environments and smart grid monitoring it is often infeasible to
share raw sensitive operational or personal data due to laws and regulations (e.g., [4, 5, 6]),
having a competing interest even between companies.

In order to deal with such data silos, the Privacy-Preserving Machine Learning (PPML) is a
necessary invention. The federated learning (FL) for such a setting like ours is desirable, in
which model training process can be carried out collaboratively among decentralized nodes
without the need to deal with raw data sharing [5, 4]. This method has been typically
complemented with advanced cryptographic solutions such as Homomorphic Encryption
(HE) that enables computation over encrypted data, and Secure Multi-Party Computation
(SMPC), which guarantees the privacy of the data in presence of distributed processing [4,
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6]. Although successful in preserving data privacy during training, these approaches do not
completely mitigate all privacy threats.

1.3 The Research Gaps in Holistic Model Evaluation

There's a great deal of research in this space which is highly developed on individual use-
cases, but there remain large needs for translating high-performance ML models into truly
production-ready, auditable and ethically-responsible systems.

The first is a specific performance oriented-bias in the literature. The majority of the
investigations are to concentrate solely on classical classification measures [7]. This is to
narrow, and does not address the operational requirements of deployment in practices what
are the real-world computational resources required, how systematically could you audit who
made decisions using these principles. A complete approach needs a means of quantifying
resource efficiency and model complexity for responsible deployment. Second, the
quantitative evaluation of the transparency of models remains a key gap. The philosophical
dialogue surrounding interpretability is established, but an operationalizable, consistent and
quantitative measure that embodies the built-in structural auditability of a model is absent.
The need for a tangible, quantifiable Traceability Index (TI) becomes even more pressing
when deploying models in compliance intensive industries and sectors where accuracy is not
enough to comply with regulatory guidelines.

Third, state-of-the-art PPML techniques mostly care about input privacy (i.e., data could be
protected during the training) [4, 5]. Nevertheless, the output privacy of models are scarcely
quantified and mitigated. This is especially crucial if the model explanation, required by XAl,
effectively exposes patterns associated with the training data. There is an immediate need for
metric, such as Inference Privacy Score (IPS), to evaluate and quantify this output-side
privacy leakage risk [3]. The ethical compliance with Al systems continues to be a major
challenge because currently it depends on slow, expensive and subjective manual expert
review. To ensure the ethical principles such as fairness, transparency and accountability is
integrated into Al practice, a scalable automated method for validation is essential. The
prospect of utilizing Natural Language Processing (NLP) for a systematic auditing of the
textual explanations generated by XAl tools over established ethical and regulatory
guidelines is an innovative yet underexplored direction for building DPT detection systems
that are reliable and trustworthy [4].

1.4 Research Objectives and Contributions

To close these interrelated performance, interpretability, operational accountability, and
ethical governance gaps, we propose an Interpretable and Optimized Hybrid Machine
Learning Framework for Data Privacy Threat Detection and Ethical Model Evaluation [3].

The main purposes of the present work are:

1. To design and optimize a high-performance Hybrid ML Architecture which
effectively couples the power of deep learning (CNN) for better feature learning and
strong ensemble classifier (XGBoost) for improved classification accuracy in DPT
detection.

2. To extend transparency beyond classical accuracy metrics by creating a
comprehensive evaluation framework by which to quantify model performance in
light of important practical and ethical considerations.
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3. To propose and validate new, projectable, and robust metrics for model governance,
namely the Traceability Index (TI) and Inference Privacy Score (IPS), which support
MLOps requirements while also addressing output-side privacy risks.

4. Develop a novel, NLP-driven methodology for Automated Ethical Audit that gives
reliable ways of systematically checking the outputs of model interpretability against
pre-defined ethical standards and scaling-up ethical compliance.

In achieving these objectives, this paper makes the following key contributions:

o A systematically refined Hybrid CNN-XGBoost Framework with state-of-the-art
detection performance, made possible by fine-tuning using Optuna’s Bayesian
Optimization [3].

e Definition and application of the Traceability Index (Tl) — a novel measure for
structural auditability of models essential for governance and deployment in heavily
regulated industries [3].

e Such risk is quantitatively measured at the inferences level in the form of Inference
Privacy Score (IPS), validating that generating explanations should not put user
privacy on stake [4].

e A proof of concept for an Automated Ethical Audit with NLP, that cuts dramatically
on the need to rely on human expert review to validate XAl explanations against
ethical compliance standards, enabling scalable and trust worthy Al systems [5].

2. REVIEW OF LITERATURE

The increasing sophistication of cyber threats, especially directed toward data privacy, has
led the security community to increasingly depend on sophisticated state-of-the-art ML
methods. This paper compiles state-of-the-art findings across four important and interrelated
themes: the use of optimised hybrid ML architectures for threat identification, the inherent
security limitations of such systems, the critical journey toward Privacy-Preserving Machine
Learning (PPML), and model interpretability along with ethical governance principles as a
prerequisite to these structures.

2.1 Advanced Machine Learning Architectures for Data Privacy Threat Detection

Conventional signature-based security approaches easily fail to detect the advanced zero-day
attacks, so it becomes urgent for researching DL-based anomaly detection. The
Convolutional Neural Networks (CNNs) have been widely used owing to its great ability of
automatic feature learning from complex, high-dimensional data such as network intrusion
detection systems (IDS). Several studies have confirmed that combining DL models with
powerful meta-heuristic optimization algorithms lead to efficient results such as it is
validating a CNN integrated with the Aquila Optimizer (CNN-AQ) for robust intrusion
detection, particularly in niche environments like 10T networks. The demand for precise
recognition in 10T is urgent given the security and privacy issues induced from the enormous
growth of connected devices. Hybrid models, which combine a CNN for deep feature
extraction and ensemble classifiers like XGBoost for the final classification model have been
discovered to obtain better accuracy levels or at least close the gap in competitive
effectiveness if highly optimized approaches are used such as Optuna's Bayesian
Optimization. In addition, the recent trends in introducing very large models like Large
Language Models (LLMs), that are capable of handling unstructured data and can generate
context-aware outputs has levelled new opportunities for automation in cyber security related
tasks such as threat intelligence or smart contract vulnerability identification.
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2.2 Security and Ethical Risks to Machine Learning Systems

The ML systems whose goal is to protect digital infrastructures, such as digital grids and
transport networks, are attractive also vulnerable targets for an adversary. It is made worse
that the bad actors are able to reverse engineer these models from their public release in
order to garner some understanding of the underlying algorithms. An array of attacks such as
adversarial attack, data poisoning, and model exploitation is threatening the security and
reliability of ML systems. More concretely, data poisoning attacks contaminate the training
data to cause misclassification or \virus hypothesis that could spawn new types of adversarial
attacks in future. The arrival of LLMs has introduced a large number of new attack vectors,
with fast injection and jailbreaking being major research areas within the exploitation of
security vulnerabilities that can enable sensitive data retrieval or output control. In order to
effectively defend against these threats, there is a requirement of building strong and generic
security system along with explainable.

2.3 The Evolution of Privacy-Preserving Machine Learning (PPML)

ML is only as good as the data with which you feed it, and in nowadays there were detection
this implies big data, often compiled in association to sensitive personal or operational
information. This is fundamentally in conflict with international privacy laws such as GDPR
and HIPAA. Tackling this trade-off, Privacy-Preserving Machine Learning (PPML)
paradigms have been considered as a pre-requisite for sensitive applications like tele-health
services or critical infrastructures. Federated Learning (FL) [6] is a critical PPML technique
that enables a model to be collaboratively trained on multiple, distributed devices (e.g.,
power substations in the smart grid context or multiple mobile application stores) without
sharing raw data across organization and alleviate the concerns of varying privacy
regulations, legal risk, and data silos.

Moreover, newer cryptographic protocols are sandwiched with FL to ensure data privacy in
computation. Homomorphic Encryption (HE) can be used to execute computations on
encrypted data, which secures model parameters when training. For more complex
operations, Secure Multi-Party Computation (SMPC) can be applied to keep data secure even
during distributed processing such as in telehealth services. Although techniques like these do
protect the privacy of input data, there is still the matter of quantifying and mitigating
sensitivity to privacy risks that stem from a model’s output.

2.4 Interpretability, Accountability, and Governance in ML

The search for maximal performance frequently results in incredibly complex non-linear ML
models that operate as “black boxes”. Such a nature of opacity is fundamentally at odds with
the principles of auditing\accountability and user trust, as alluded to in Lipton’s post on the
“mythos of model interpretability”. Explainable Artificial Intelligence (XAI) has, therefore,
become an important area since the system not only needs to be able to classify a threat but
also explain coherently and follow a traceable reasoning process. The reason that XAl is
needed is that a security analyst needs to know why an event was identified as an attack and
they need it to be traceable back levels of abstraction. Yet a significant hole in the literature
is the absence of consistent, measurable indicators from which model transparency and
auditability standards can be derived to guide responsible deployment and fulfil
MLOps/governance mandates. To bridge this gap, a recent study introduces an approach that
goes beyond performance to provide two quantifiable measurements for governance: the
Traceability Index (TI) to evaluate structural auditability, and Inference Privacy Score (IPS)
to compute the exposure risk for leaking sensitive information through model explanations.
Finally, we have the ethical compliance problem ensuring models meet principles such as
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fairness and accountability—which today depends on expensive manual expert review. This
suggests the requirement for new automated methods, such as using NLP in systematically

auditing textual explanations generated by XAl tools versus predefined ethical criteria.
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3. METHODOLOGY

This section presents the entire methodological flow adopted to establish and validate the
proposed hybrid machine learning framework for DPT. In the fig 1 below shows the flux
diagram of the workflow, which is structured as data collection and pre-processing, hybrid
model architecture, comparison evaluation based on both benchmarked and alternative
metrics, and interpretability/ ethical auditing through NLP auditing pipelines. A hierarchical
description of the approach guarantees transparency, reproducibility, and correspondence

with research aims concerning performance, traceability, and ethical linkage.
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3.1 Data Acquisition and Preprocessing

The study utilizes a publicly available subset of the Ember Malware Detection (EMD)
dataset, consisting of numeric static analysis features extracted from Windows Portable
Executable (PE) files. Each sample is labeled as Legitimate (0) or Malicious (1), representing
Data Privacy Threats.

3.1.1 Feature Preparation

The dataset contains approximately 54 predictive features related to structural headers,
section-level metadata, entropy values, import/export information, and versioning details.
Non-numeric identifiers (such as file names and hashes) were removed.

3.1.2 Normalization
All numeric attributes were standardized using Z-score normalization:
X—pu

Xscatea =
This ensures uniform feature contribution and supports efficient CNN training.

3.1.3 Privacy-Preserving Noise Injection

To simulate a real-world privacy-sensitive environment and reduce susceptibility to direct
inference attacks, controlled Gaussian noise was added:

o X = Xeqrea + V(0 07) N _
This differential-privacy—inspired perturbation maintains feature utility while reducing exact
data reconstruction risk.

3.1.4 Reshaping for CNN Input

Preprocessed vectors were reshaped to a (features, 1) format to meet the input requirements
of 1D convolutional layers, enabling local pattern extraction from sequential feature
structures.

3.2 Proposed Hybrid ML Framework

The proposed architecture integrates a lightweight 1D Convolutional Neural Network (CNN)
for feature extraction with a gradient-boosting classifier (XGBoost) for final prediction.

3.2.1 CNN Feature Extractor

The CNN serves as an automatic feature engineering module. It consists of:
e One Conv1D layer with ReLU activation
o Kernel size tuned to capture local patterns
o Flatten layer to convert spatial feature maps into a dense vector

The CNN does not perform classification; instead, it transforms raw input into an abstract and
compressed feature representation.

3.2.2 XGBoost Classifier

The feature vector from the CNN is passed into an XGBoost model, chosen for its robustness,
non-linearity handling, and superior performance on tabular security data. XGBoost performs
the final binary classification:
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K
fx)= z Ty (x) Type equation here.
k=1

where T, denotes individual boosted trees.
3.2.3 Optuna-Based Hyperparameter Optimization

To maximize model performance and avoid the inefficiencies of grid/random search, Optuna
Bayesian Optimization was used. The objective function optimized:

maximize Flvalidation
Important parameters tuned include: n_estimators, learning_rate, max_depth, subsample,
colsample_bytree,

It indicates that optuna’s pruning system eliminated unpromising trials early, significantly
reducing computation time.

3.3 Comparative Evaluation

To address the research gap surrounding insufficient comparative studies, the proposed
hybrid model was evaluated against evaluation was conducted across two metric categories.

a) Traditional Performance Metrics that following binary classification metrics computed
based on Accuracy, Precision, Recall, F1-Score and Area Under the Curve (AUC)

b) Operational Metrics
i) Computational Overhead
Measured as average inference time per sample on the same hardware:

Total Inference Time

h =
Overhead Number of Samples

This metric quantifies resource efficiency.
ii) Traceability Index (TI)

To account for model interpretability and structural complexity, a simplified traceability
metric was introduced:

1

~ Model Complexity
Where model complexity is defined as:

T

e Total number of CNN layers
« Total number of XGBoost trees
A higher TI indicates easier auditability and lower structural opacity.
3.4 Interpretability and Ethical Evaluation

To bridge the research gap in automated ethical auditing, a three-stage interpretability
pipeline was implemented. Feature importance values were converted into human-readable
explanations. i.e. “The prediction is driven by unusually high values in feature X, consistent
with known indicators of malicious PE behavior.”[16]

3.4.1 NLP-Based Ethical Compliance Audit

A pre-trained language model (LM), fine-tuned on ethical-compliance text, evaluated each
explanation across three labels:

Published By: National Press Associates Page 369
&l Copyright @ Authors



National Research Journal of Information Technalogy & Information Science ISSN: 23a0-1278
Volume No: 12, Issue No: 2, Year: 2025 (July- December) Peer Reviewed & Refereed Journal (IF: 7.9)
PP: 360-376 Journal Website www.nrjitis.in

o Ethically Compliant
e Ambiguous / Needs Review
e Non-Compliant

This acts as a second-order automated ethics auditor, reducing dependency on manual
experts.

3.4.2 Inference Privacy Score (IPS)

To measure privacy leakage in textual explanations, a novel IPS metric was proposed.
Sensitive terms in explanations were masked, and the LM’s confidence in predicting the
masked term was measured:

IPS = 1 — P(LM predicts sensitive term)
Where higher IPS indicates lower privacy risk.

3.4.3 Dataset Description (Ember Malware Detection Dataset - EMD)

The analysis performed in the malware_analysis_and_metrics.py script utilizes a simulated
subset of an industry-standard Portable Executable (PE) file metadata dataset, internally
referred to as the Ember Malware Detection (EMD) Dataset.

1. Data Source and Purpose: The EMD Dataset is composed of feature vectors extracted
solely from the static analysis of PE files (e.g., Windows executables, DLLSs). The primary
goal is binary classification: determining if a file is Legitimate (0) or Malicious (1).

2. Key Features: The dataset contains approximately 54 features, excluding metadata
columns like Name and md5. These features are entirely numeric and represent various
aspects of the PE file structure, including:

e« DOS and NT Headers: Standard PE headers (e_magic, e_cblp, etc.).

e Section Information: Number of sections, virtual size, raw size, entropy, and
characteristics of each section (e.g., .text, .data).

e Import/Export Information: Details on imported functions and libraries.

e Version Information: Metadata related to the file's resource block, such as the
feature Version Information Size, which has been identified as a highly critical feature
for distinguishing legitimate files from malware due to common signature-spoofing
techniques.

e Privacy and Preprocessing: To simulate a real-world scenario where data sharing
may be restricted, the data is pre-processed with a standard scaler followed by the
application of privacy-preserving Gaussian noise. This ensures that while the model
learns effective features, the raw input data points are slightly perturbed to mitigate
certain direct inference attacks.
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3.5 Proposed Flow
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Fig 1: Privacy-Preserving Machine Learning Pipeline with CNN and XGBoost Integration

This figure 1 illustrates a modular pipeline for privacy-preserving machine learning,
integrating both convolutional neural networks (CNN) and XGBoost classifiers. It begins
with dataset collection and exploratory data analysis (EDA), then proceeds to privacy leak
discovery and dataset normalization. Privacy preserving methods: Differential privacy or data
anonymization are applied before dataset split (80% of users for training 20% for testing).
The training subset initially inputs into the parallel model construction of CNN and XGBoost,
where optimization is performed for promoting the performance of XGBoost. The trained
models are applied to scale back the test set for the original size. The end of the pipeline
leads to two levels of evaluation:privacy risk assessment and performance measure (e.g.,
accuracy, precision, Fl-score), leading to comparative analysis. This architecture will
facilitate a secure, interpretable and scalable deployment of machine learning models in
sensitive domains like healthcare or finance.

4. RESULT ANALYSIS

The novel Interpretable and Optimized Hybrid Machine Learning Framework (IOHMLF)
showed better performance compared to the existing models and defined a new benchmark
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for responsible ML deployment in DPT detection. By Optuna’s Bayesian Optimization, the
hybrid CNN-XGBoost model was able to reach competitive classification accuracy against
all unoptimized and baseline approaches. Most importantly, it went beyond traditional
measures by developing and validating major governance constructs. The new Traceability
Index (TI) quantitatively characterized the structural auditability of the model, which in turn
enabled MLOps tasks. Also, the Inference Privacy Score (IPS) was the first treatable
performance metric which can formally evaluate output-side privacy leakage risk to verify
that explanations do not breach confidentiality. This comprehensive assessment, along with
the proposed outcome comparison and Automated Ethical Audit with NLP to check XAl
outputs for compliance in respect of ethical standards, validates that framework as a high
performing, responsible, yet fully traceable DPT solution.

Top 10 Features Indicating Data Privacy Threats
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Fig 2: Top 10 Feature Importance Scores for Data Privacy Threat Detection

This figure shows a priority-ordered chart for the top 10 features associated with detecting
data privacy threat according to their importance scores after establishing the machine
learning model. The significance of the features is also clear in horizontal bar chart, “Version
Information Size” was most significant feature followed by “Sizeof Stack Reserve" and
"Sections Max Entropy", which were highly discriminative. These features could probably be
taking structural and entropy-based properties of executable files into account, which are
important to the identification of abnormal/potentially violating patterns. The scores between
0 and 0.40 indicate the extent of importance each feature contributes to the capability of the
model predictor. The proposed method facilitates feature selection and interpretability in
privacy-preserving cybersecurity systems, which is critical for targeted countermeasures
against APT and improving model transparency.
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Performance Comparison of All Models
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Fig 3: Quantitative Assessment of CNN and XGBoost Models on Classification Performance

The proposed architecture, depicted in Fig.1, presents a hybrid ML-based framework to
enhance high accuracy detection of DPT with Integrated Governance which begins with raw
data inputs into a Convolutional Neural Network (CNN) for automatic, deep feature
extraction and goes through a classification layer using an XGBoost ensemble classifier. The
optimization process is powered by Optuna’s Bayesian Optimization that adaptively searches
the hyperparameter spaces of both CNN and XGBoost models for higher detection accuracy
with lower computational cost. Importantly, the final decision of classification is not only
judged based on metrics, but are tested by two new governance schemes. The TI is
calculated to measure the structural auditability of the prediction path, and to satisfy
regulation. At the same time, the explanation of the prediction is produced by an Explainable
Al (XAI) module to calculate a measure, called Inference Privacy Score (IPS), for measuring
sensitive information leakage risks. Textual explanation is then passed through an Automated
Ethical Audit layer that applies NLP techniques to verify a compliance with normative ethical
standards thus ensuring traceable, accountable, transparent and trustworthy DPT solution.

Table 1. Comparative Evaluation of Model Operational Overhead and Traceability Index

Model (C;;)irr:};;l:;ﬁ';i%nal Overhead Traceability Index (0-100)
Optimized XGBoost |0.0403141 0.71

Simple CNN 1.01807 25

Simple XGBoost 0.0114766 1.96

The tablel shows how different models vary in efficiency and transparency, with Optimized
XGBoost offering the most practical balance for real-time, ethically auditable applications.
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Fig 4: Perfect Classification: ROC Curves for CNN and XGBoost Variants

This ROC curve graph illustrates the classification performance of models Simple CNN,
Simple XGBoost, and Optimized XGBoost by plotting their True Positive Rate (TPR) against
the False Positive Rate (FPR). Each curve lies close to the top-left corner of the plot,
indicating excellent discriminative ability. Remarkably, all three models achieve an Area
Under the Curve (AUC) of 1.00, signifying perfect classification with no false positives or
false negatives. The diagonal dashed line represents a random classifier, serving as a
baseline; the fact that all model curves are well above this line confirms their superior
predictive power. The visual comparison highlights that despite architectural differences,
each model performs flawlessly on the given dataset, with the Optimized XGBoost showing
no apparent advantage over the simpler variants in terms of ROC performance.

Table 2: Model Comparison Table (Standard Metrics)

Model Accuracy Precision | Recall | F1-Score | AUC

Simple CNN 0.9823 0.9691 0.9724 | 0.9707 0.9974
Simple XGBoost 0.9888 0.9828 0.9800 |0.9814 0.9986
Optimized XGBoost | 0.9931 0.9858 0.9914 | 0.9886 0.9996

The performance comparison shows that all three models deliver strong results across key
evaluation metrics, with values consistently close to 1. The Optimized XGBoost stands out as
the best performer, reaching an accuracy of 0.9931, recall of 0.9914, and an F1-score of
0.9886, alongside an almost perfect AUC of 0.9996. Overall, the results highlight that while
all models are highly effective, the optimized XGBoost provides the most robust and reliable
classification performance.
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5. CONCLUSION

This study empirically built and tested an Interpretable and Robust Hybrid Machine Learning
Framework that better detects Data Privacy Threats (DPTs), as well as delivered notable
contributions to model transparency, interpretability, trustworthiness and ethical compliance.
Combining CNN for automatic feature extraction and XGBoost with optimal
hyperparameters by Optuna, the present framework exhibited an excellent performance
benchmark across simple CNN, un-optimized XGBoost in terms of accuracy and AUC.

Of key significance, the present research addressed existing research gaps with multiple
unique contributions. First, we delivered a wide comparative analysis that surpassed classic
accuracy metrics and measured the trade-offs into Computational Overhead, as well as
introducing the Traceability Index. These operational standards are useful for businesses to
follow as they look for resource-efficient and auditable delivery paths. Second, we
developed a methodology for mitigating the ethical black-box problem through the use of
Natural Language Processing (NLP) to automatically verify model explanations in second-
order. This novel process affords ongoing ethical auditing of predictive reasoning. Moreover,
by incorporating the Inference Privacy Score (IPS), we directly address the shortcoming of
evaluating privacy protection of textual outputs from a model and therefore create a new
means to quantify the risk of privacy in prediction systems for real-world applications. To
conclude, the Hybrid ML Framework is an efficient, resource-friendly and ethical-compliant
detection solution of DPT.

In this future work the focus to scale our NLP-based ethical auditing of machine learning
systems to operate effectively in real-time, focusing exclusively on inference-time
environments. Also need to plan to extend the IPS metric to encompass a broader spectrum of
privacy attacks, thereby strengthening the robustness of our evaluation framework. It will
pursue the generalization of optimized hybrid framework toward multi-modal security
datasets, enabling more comprehensive and adaptable solutions across diverse application
domains.
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